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Abstract

Two and three-dimensional finite volume extensions of the Lax–Friedrichs (LF) and Nessyahu–Tadmor one-dimen-

sional difference schemes were previously presented and successfully applied to several problems for nonlinear hyper-

bolic systems, and in particular to typical test cases for both inviscid and viscous compressible flows. These ‘‘central’’

schemes by-pass the resolution, at the cell interfaces, of the Riemann problems, thanks to the use of the staggered LF

scheme which serves as the base scheme on which high order finite volume methods can be constructed using van Leer�s
MUSCL-type limited reconstruction principle. For this purpose, two dual grids are used at alternate time steps. These

methods are extended here to several problems in one- and multi-dimensional ideal compressible magnetohydrodynam-

ics using a modified version of the first author�s central methods with oblique (diamond shaped) dual cells. In two-

dimensions the system has eight equations and solving the corresponding Riemann problem is an elaborate and

time-consuming process. Central methods lead to significant computing time reductions, and the numerical experiments

presented here suggest the accuracy is quite satisfactory. In order to satisfy the physical constraint $ Æ B = 0, we have

constructed a strategy (‘‘CTCS’’) inspired from the Constrained Transportmethod of Evans and Hawley. The validity of

our base scheme and our CTCS approach is clearly confirmed by the results.
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1. Introduction

1.1. Some previous work on multi-dimensional central schemes

Many problems in applied mathematics, physics and the engineering sciences can be formulated math-
ematically with the help of an idealized model based on hyperbolic partial differential equations and more

specifically hyperbolic systems of conservation laws [22] or, in the case of systems with a source term, hyper-

bolic systems of balance laws [43]. In the past thirty years or so, and following the first fundamental papers

of Godunov [23], Lax and Wendroff [34], an enormous amount of work has appeared on the subject of

numerical methods for these problems and in particular for the development of non-oscillatory, high-order

‘‘shock-capturing’’ methods for conservation laws and their many applications, particularly for compress-

ible flows and aerodynamics [26]; see the expository works [24,47,25,22,31,35,46,42]. We apologize in ad-

vance to the many important contributors whose name could not be explicitly mentioned in this paper.
With the appearance of finite volume methods, based on Godunov�s principle of integrating the PDE on

the discrete cells [23], and upwind methods including Godunov�s method, as well as the methods of Mur-

man–Cole [25], Steger–Warming [25], users had the choice between many options and in particular between

upwind schemes, including those based on Riemann�s solvers, and centered schemes with the addition of

some kind of artificial viscosity to stabilize the scheme and avoid oscillations near discontinuities [26].

In another approach the Nessyahu–Tadmor one-dimensional finite difference scheme (‘‘NT’’) [37] led to

the additional option of a Godunov-type scheme without the requirement to solve the Riemann problems

at the cell interfaces, thanks to the use of a staggered form of the Lax–Friedrichs scheme as a base scheme,
complemented by van Leer�s ‘‘MUSCL’’-type limited reconstructions for higher accuracy [50,51]. This

scheme, which uses two alternate, dual grids at alternate time steps, was recently extended to multi-dimen-

sional finite volume versions for Cartesian grids [2,28] as well as unstructured triangular [1,3] and tetrahe-

dral grids [7,10]. More recently, we constructed [9] modified versions of the above schemes which avoid the

time predictor step typical of the original NT scheme formulation, and therefore lead to time reductions of

about 40%.

Another approach to improve these schemes consists in applying Runge–Kutta methods for the integra-

tion with respect to time [38] where so-called ‘‘central Runge–Kutta schemes’’ have been proposed and suc-
cessfully tested. In the case of Cartesian grids, we also presented [6,8,10,11] a modified scheme introducing

new oblique dual cells (‘‘diamond cells’’) instead of the dual cells with sides parallel to the coordinates axes

originally considered in [2] for the second grid. These diamond cells were in fact the direct analogue of the

quadrilateral dual cells introduced in the two-dimensional finite volume extension of the NT scheme

described in [1,3] for unstructured triangular grids. They have also been considered, independently, by

Katsaounis and Levy [30]; combined with the use of standard limiters, they lead to second-order accuracy

and monotonicity preservation, in the case of continuous initial data.

They often lead to better L1 and L1 errors, improved resolution of oblique shocks, and to higher orders
of accuracy (see [8]). They also tend to prevent the crossing of discontinuities in the normal direction.

Instead of modifying the dual cells to improve the accuracy, another approach consisting of modifying

the numerical flux by using an improved quadrature formula for the fluxes across the cell boundaries has

recently been proposed by Lie and Noelle [36]. Their scheme is less sensitive to grid orientation effects and

leads to an improved preservation of symmetries as compared with the original two-dimensional finite

volume extensions of the NT scheme considered in [8].

1.2. Previous work on numerical MHD

The adaptation of shock capturing numerical methods to the equations of Magnetohydrodynamics

(MHD) has been a very dynamic and continuous process since the early eighties; without attempting to
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be complete, let us mention the early work of Brackbill and Barnes [15], who proposed a ‘‘projection

scheme’’ to satisfy the divB
!¼ 0 constraint, involving the solution of a Poisson equation. Since Magneto-

hydrodynamics plays an important role in astrophysical flows, which are highly compressible, it was soon

observed that Godunov-type methods might be a useful approach to solve these problems: Brio and Wu

[16] applied Roe�s method to the one-dimensional MHD equations. Zachary and Colella [52] used the Eng-
quist–Osher flux solver for one-dimensional ideal MHD, which was then extended to multi-dimensional

ideal MHD in Zachary et al. [53].

Dai and Woodward [17] presented a nonlinear approximate Riemann solver specifically designed for

MHD problems, and extended the piecewise parabolic method to multi-dimensional MHD problems

[19]. They also made important contributions in [18] with a second-order accurate difference scheme for

multi-dimensional MHD using an approximate MHD Riemann solver, and an approach to maintain the

divergence-free condition exactly.

Powell [41] and Powell et al. [40,39] developed a Roe-type Riemann solver and, using a non-conservative
form of the MHD equations, an upwind scheme for MHD equations, the ‘‘8-wave Riemann solver meth-

od’’ (where the eighth wave is associated with propagation of divB
!
) which proved to be numerically robust.

Finally, Ryu and Jones [44], Barmin et al. [14] Tóth and Odstrčil [49] Balsara [13] all applied TVD-type

methods to the MHD equations.

1.3. Contents of the paper

In this paper we extend central NT-type one-dimensional or multi-dimensional finite volume schemes to
the resolution of some problems in ideal (inviscid and non-resistive) compressible MHD. The system of

governing equations features eight nonlinear hyperbolic conservation equations for mass, linear momen-

tum, energy and the three components of the magnetic field vector B
!
. Even in the case where B

!
only de-

pends on one space variable, the system still has eight equations but can be reduced to seven equations

thanks to the physical constraint $ Æ B = 0. The subject of how one should best try to satisfy this constraint

for multi-dimensional problems has been discussed in several important papers [48,15,39,41,40,17–19].

The Jacobian matrix in this case is thus a 7 · 7 matrix of which 5 of the 7 eigenvalues may coincide [16].

Moreover, the system of MHD equations is nonconvex [20]. This gives rise to a wave structure which is
substantially more complicated than that of the Euler equations for compressible flow. In particular so-

called compound waves may appear, which consist of a shock and, directly attached, a rarefaction wave.

The solution of the corresponding Riemann problem, exact or approximate, is a complicated and time-

consuming process. We expect the introduction of our Riemann solver-free central methods to lead to sig-

nificant computing time reductions in two or three space dimensions.

(i) In one-dimension, we present an adaptation of the NT scheme to two variants of the MHD-shock tube

problem [16] which leads to fairly good results, and, compared with a method based on Riemann solv-
ers, is also likely to bring about significant computing time reductions, as was the case for the Euler

and Navier–Stokes equations [2–4].

(ii) We also studied, in two spatial dimensions,the 2D Riemann problem with continuation boundary

conditions originally considered without the magnetic field by [45] and later, in an MHD context,

by Dai–Woodward [18]. We then solve the Orszag–Tang MHD turbulence problem which describes

the evolution of a compressible vortex system. The problem involves the interaction between several

shock waves traveling at various speed regimes. We apply our new Constrained Transport method

to numerically enforce the physical constraint on the magnetic field.

The organization of the paper is as follows. In Section 2 we describe the mathematical formulation of

multi-dimensional MHD problems. Section 3 presents a short review of the one-dimensional NT finite
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difference scheme. Section 4 gives a complete description of our two-dimensional finite volume extension of

the NT scheme using diamond staggered dual cells. In section 5 we present the physical constraint on the

magnetic field and describe several methods to satisfy the divergence-free property of the magnetic field. We

then introduce our method for enforcing the $ Æ B = 0 constraint. One and two-dimensional numerical re-

sults are presented in section 6.
2. Ideal MHD equations

When a conducting fluid moves in a magnetic field, electric fields are induced in it and electric currents

flow. Due to the magnetic field, the currents may modify the flow. Conversely, the currents themselves mod-

ify the magnetic field [27], and even if the components of B only depend on one variable, say x, the magnetic

forces exerted on the ions constituting the ‘‘plasma’’, i.e., the fluid (gas) in motion are three-dimensional,
thus giving rise to a three-dimensional flow. The complex interaction between magnetic and fluid dynamic

phenomena is well described by a set of eight equations which are: one mass conservation law, three

momentum conservation laws, one energy conservation law and Faraday�s (three-dimensional) law for

the magnetic field B:
o

ot

q

qu

qe

B

2
6664

3
7775þr �

qu

quuþ Iðp þ B�B
2l0

Þ � BB
l0

ðqeþ p þ B�B
2l0

Þu� 1
l0
ðu � BÞB

uB� Bu

2
6664

3
7775 ¼ 0; ð1Þ
where q, u, p, B and e are the mass density, three-component velocity field vector, thermal pressure, three-
component magnetic field vector and the specific total energy; l0 is the permeability of the vacuum and I is

the (3 · 3) identity matrix. This system of equations is completed by the equation of state p = (c � 1)q�,
where c is the ratio of specific heats and � denotes the specific internal energy. It is usual to non-dimension-

alize the ideal MHD equations, by setting reference scales for the length L or the free-stream density q1,

and scaling the current magnetic field with
ffiffiffiffiffi
l0

p
, which results in the removal of l0 from the above system.

In this paper, no scaling is applied so the permeability term of the vacuum is kept.

The two-dimensional version of the system takes the following form:
oU
!

ot
þ oF

!

ox
þ oG

!

oy
¼ 0; ð2Þ
with
U
!¼

q

qux
quy
quz
qe

Bx

By

Bz

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; F

!ðU!Þ ¼

qux
qu2x þPxx

quxuy þPxy

quxuz þPxz

quxeþ uxPxx þ uyPxy þ uzPxz

0

Kz

�Ky

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; G

!ðU!Þ ¼

quy
quyux þPxy

qu2y þPyy

quyuz þPyz

quyeþ uxPxy þ uyPyy þ uzPyz

�Kz

0

Kx

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
;

ð3Þ
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where K ” u · B, e is the specific total energy, Pxx, Pyy and Pzz are the diagonal elements of the total

pressure tensor, Pxy, Pxz and Pyz are the off-diagonal elements of the tensor which may be obtained from

system (1)
Pii ¼ p þ 1

8p
B2
j þ B2

k � B2
i

� �
;

Pij ¼ � 1

4p
BiBj; for i; j; k ¼ x; y; z;

e ¼ �þ 1

2
u2

1

8pq
B2:
In the case of one-dimensional MHD, the divergence-free constraint reduces the differential system (2) to

the form U
!

t þ F
!

x ¼ 0 with seven equations by freezing the value of the x-component of the magnetic field,

giving rise to the vectors U
!¼ ðq; qux; quy ; quz; qe;By ;BzÞ and F

!¼ ðqux; qu2x þPxx; quxuy þPxy ; quxuzþ
Pxz; quxeþ uxPxx þ uyPxy þ uzPxz;Kz;�KyÞ. The resulting system allows three kinds of waves

[32,27,18,20]: fast waves, Alfven waves and slow waves. These waves have propagation speeds denoted

respectively by Cf, Ca and Cs which are the eigenvalues of the differential system, given by
C2
f ;s ¼

1

2
ðC2

o þ C2
a þ C2

t Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2

o þ C2
a þ C2

t Þ
2 � 4C2

oC
2
a

q� �
; ð4Þ

Ca ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qB2

x=ð4pÞ
q

ð5Þ
with Co ¼
ffiffiffiffiffiffiffiffiffiffi
cp=q

p
; Ct ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðB2

y þ B2
z Þ=ð4pÞ

q
. For a complete presentation of the eigensystem, the interested

reader is referred to [27,32]. We recall that eigenvalues are used in the CFL condition to determine the time
step.
3. One-dimensional central schemes

We consider the initial value problem
ut þ f ðuÞx ¼ 0;

uðx; t ¼ 0Þ ¼ uoðxÞ
ð6Þ
and the (first-order accurate) Lax–Friedrichs scheme [33] written in its staggered form as
unþ1
iþ1=2 ¼

1

2
ðuniþ1 þ uni Þ � kðf ðuniþ1Þ � f ðuni ÞÞ: ð7Þ
To obtain a second-order accurate scheme, Nessyahu and Tadmor�s [37] introduced van Leer�s MUSCL-

type [50] piecewise linear reconstruction of the piecewise constant solution obtained at the previous step

(i.e., at time tn) (see Fig. 1)
uðx; tnÞ ¼ Liðx; tnÞ ¼ uni þ ðx� xiÞ
u0i
Dx

; x 2 ½xi�1=2; xiþ1=2�; ð8Þ
where
u0i ¼ ðuni Þ
0 ffi h

o

ox
uðx; tnÞjx¼xi

þOðDx2Þ; ð9Þ



Fig. 1. The resolution of Riemann problems at cell interfaces is avoided when alternating from original to staggered grid.
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approximates the slope to first-order accuracy; this leads to second-order spatial accuracy. Second-order

accuracy with respect to time is then obtained if we apply the midpoint rule for the time integral of the flux

[37]. Nessyahu and Tadmor�s formula [37] gives the solution on the staggered grid (i.e., at nodes xi+1/2)
unþ1
iþ1=2 ¼

1

2
ðuniþ1 þ uni Þ þ

1

8
ððuni Þ

0 � ðuniþ1Þ
0Þ � kðf ðunþ1=2

iþ1 Þ � f ðunþ1=2
i ÞÞ; ð10Þ
where unþ1=2
i is an approximate value defined by an intermediate predictor step at time tn + 1/2. The solution

at the nodes of the original grid {xi} and time tn + 2 is obtained in a similar way.
4. Two-dimensional Cartesian diamond-staggered scheme

We consider a two-dimensional hyperbolic system of conservation laws
U
!

t þr � F!ðU!Þ � U
!

t þ f
!

x þ g!y ¼ 0; ð11Þ
where
U
!¼

u1
u2

..

.

un

0
BBBB@

1
CCCCA; F

!ðU!Þ ¼ ð f!; g!Þ; f
!¼

f1
f2

..

.

fn

0
BBBB@

1
CCCCA; g!¼

g1
g2

..

.

gn

0
BBBB@

1
CCCCA;
with the initial condition U
!ðx; y; 0Þ ¼ U

!
oðx; yÞ. System (11) is assumed to be hyperbolic in the sense that

any linear combination of the n · n Jacobian matrices AðU!Þ; BðU!Þ
AðU!Þ ¼ o f
!

oU
! ; BðU!Þ ¼ o g!

oU
!

has n real eigenvalues and n linearly independent right and left eigenvectors. As is well known, both the one-

dimensional Lax–Friedrichs and Nessyahu–Tadmor schemes use alternate space grids. In two-dimensions,

we shall proceed in a similar manner starting from the original Cartesian grid with cells Ci at time tn, alter-

nating to the diamond dual cell Di+1/2, j at time tn+1, and returning back to the original cell Ci of the

original structured grid as shown in Figs. 2 and 6.

Notations. We consider for our computational domain a uniform rectangular grid with M2 squares; the

extension to arbitrary rectangular grids is straightforward, except for the initialization, which requires
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numerical integration, and for the programming part of the resolution, where we have to proceed as in the

case of a fully unstructured grid. Let Dx = Dy = h = xi+1/2 � xi� 1/2 denote the mesh size, ai, j = (xi,yj) =

(ih,jh), 0 6 i, j 6M, denote the nodes of the first grid. For any arbitrary node ai, j we consider the corre-

sponding finite volume cell Ci, j for the first grid to be the square centered at ai, j with edges obtained by

joining the centroids of the four squares of the original grid adjacent to ai, j as in Fig. 2.
The diamond dual cells Di+1/2, j are obtained by first considering two successive nodes ai, j and ai+1, j of

the original grid; let [TB] denote the common interface of the Cartesian cells; the midpoint of [TB] is m. As

can be seen from Fig. 2 there are two cases for the dual diamond cells, depending on whether the axis join-

ing the two nodes of the original grid used to define the diamond cell is parallel to the x-axis or the y-axis.

The dual cell (in the x-direction) is defined to be the quadrilateral ai, jTai, j+1B as in Fig. 3. The dual cell

Di, j+1/2 is obtained when the edge ai, jai, j+1 is parallel to the y-axis.

Let U
!n

i;j ffi U
!ðai;j; tnÞ and U

!nþ1

iþ1=2;j ffi U
!ðm; tnþ1Þ denote the average values in the first and second grid at

time t n and tn+1, respectively. Performing the first time step gives U
!nþ1

iþ1=2;j while the cell values fU
!nþ2

i;j g are

obtained at the end of the second time-step.

4.1. First time step, in the x-direction

We consider here two adjacent nodes ai, j and ai+1, j, where ai, jai+1, j is parallel to the x-axis, and Di+1/2, j

denotes the corresponding dual cell (Fig. 3). We integrate Eq. (11) on Di+1/2, j · [tn, tn+1]
Fig. 2.

figure

Fig. 3
Z tnþ1

tn

Z Z
Diþ1=2;j

U
!

t dAdt ¼ �
Z tnþ1

tn

Z Z
Diþ1=2;j

r � F!dAdt: ð12Þ
Applying Green�s theorem gives
Original data grid �o�, square cells in blue and two dual oblique cells in red. (For interpretation of the references to color in this

legend, the reader is referred to the web version of this article.)

. Dual oblique cell Di+1/2,j; case when the line through the centroids of the adjacent Cartesian cells is parallel to the x-axis.
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Z Z
Diþ1=2;j

U
!ðx; y; tnþ1ÞdA ¼

Z Z
Diþ1=2;j

U
!ðx; y; tnÞdA�

Z tnþ1

tn

I
oDiþ1=2;j

ð f!nx þ g!nyÞdrdt; ð13Þ
where n!¼ ðnx; nyÞ is the unit outward normal vector to the boundary of the diamond cell oDi+1/2, j. The

left-hand side of Eq. (13) defines the average value U
!nþ1

iþ1=2;jZ Z

AðDiþ1=2;jÞU

!nþ1

iþ1=2;j �
Diþ1=2;j

U
!ðx; y; tnþ1ÞdA; ð14Þ
where AðDiþ1=2;jÞ denotes the area of the dual cell. We split the first integral of the right-hand side of Eq.

(13) into two integrals
Z Z
Diþ1=2;j

U
!ðx; y; tnÞdA ¼

Z Z
Diþ1=2;j\Ci;j

U
!ðx; y; tnÞdAþ

Z Z
Diþ1=2;j\Ciþ1;j

U
!ðx; y; tnÞdA; ð15Þ
where Di+1/2, j \ Ci, j is the triangle ai, jTB, Di+1/2, j \ Ci+1, j is the triangle ai+1, jTB.

Eq. (15) is approximated to second-order [5] accuracy by
Z Z
Diþ1=2;j

U
!ðx; y; tnÞdA ffi U

!
xi þ

Dx
3
; yi; t

n

� �
AðDiþ1=2;j \ Ci;jÞ þ U

!
xiþ1 �

Dx
3
; yj; t

n

� �
AðDiþ1=2;j

\ Ciþ1;jÞ: ð16Þ
The term AðDiþ1=2;j \ Ci;jÞ ¼ h2=4 is the area of the triangle ai, jTB.

Applying van Leer�s (MUSCL) [50] piecewise linear interpolants defined at a node ai, j by
f
U
!

i;jðx; y; tnÞ ffi U
!n

i;j þ
x� xi
Dx

U
!lim

i;j;x þ
y � yj
Dy

U
!lim

i;j;y ð17Þ
will guarantee second-order accuracy and preserve the monotonicity. Here ðrU
!Þlim � ðU!

lim

x =Dx; U
!lim

y =DyÞ
is a limited numerical gradient. Using Eqs. (16) and (17) we obtain
Z Z

Diþ1=2;j

U
!ðx; y; tnÞdA ffi h2

4
U
!n

i;j þ U
!n

iþ1;j þ
1

3
U
!lim

i;j;x �
1

3
U
!lim

iþ1;j;x

� �
: ð18Þ
The integration of the flux-integral with respect to time is approximated to second-order accuracy

with the help of the midpoint rule; the second term of the right-hand side of Eq. (13) is thus approx-

imated by
Z tnþ1

tn

I
oDiþ1=2;j

ð f!nx þ g!nyÞdrdt ffi Dt
I

oDiþ1=2;j

f
!ðU!ðx; y; tnþ1=2ÞÞnx þ g!ðU!ðx; y; tnþ1=2ÞÞny
h i

dr: ð19Þ
Eq. (19) requires prediction for both U
!

and F
!

at the intermediate time tn+1/2, at the cell interfaces. For
example we may predict values at the midpoint a�i;j of the line ai, jB, Fig. 4, using an explicit Euler approach

and Eq. (11)
U
!nþ1=2

ai;jB
ffi f

U
!

i;jða�ij ; tnÞ þ
Dt
2

f
U
!

tða�ij ; tnÞ ffi
f
U
!

i;jða�ij ; tnÞ �
Dt
2
r � F!jða�ij ;tnÞ: ð20Þ
With the help of the Jacobian matrices, we rewrite Eq. (20) as
U
!nþ1=2

ai;jB
ffi f

U
!

ijða�i;j; tnÞ �
Dt
2h

A
f
U
!

ijða�i;j; tnÞ
� �

U
!lim

i;x þ B
f
U
!

i;jða�i;j; tnÞ
� �

U
!lim

i;y

� �
: ð21Þ



Fig. 4. Diamond cell Di + 1/2,j with outward normal vectors.
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Using Eqs. (13), (18) and (21), the first step in the x-direction can then be written in the form
U
!nþ1

Diþ1=2;j
¼ 1

2
U
!n

i þ U
!n

j

� �
þ 1

6
U
!lim

i;j;x � U
!lim

iþ1;j;x

� �
� Dt

h
� f
!nþ1=2

a�i;j
� g!nþ1=2

a�i;j

� �
:

�

þ f
!nþ1=2

a�
iþ1;j

� g!nþ1=2

a�
iþ1;j

� �
þ f

!nþ1=2

aþ
iþ1;j

þ g!nþ1=2

aþ
iþ1;j

� �
þ � f

!nþ1=2

aþi;j
þ g!nþ1=2

aþi;j

� �
:

�
ð22Þ
4.2. Y-direction

Here we consider two Cartesian cells Ci, j, Ci, j+1 such that the line ai, jai, j+1 is parallel to the y-axis. Inte-

grating Eq. (11) on the domain Di, j+1/2 · [tn,tn+1] and applying Green�s theorem defines the value U
!nþ1

i;jþ1=2
AðDi;jþ1=2ÞU
!nþ1

i;jþ1=2 ¼
Z Z

Di;jþ1=2

U
!ðx; y; tnÞdA�

Z tnþ1

tn

I
oDi;jþ1=2

ð f!nx þ g!nyÞdrdt: ð23Þ
Splitting the first integral in the right-hand side of Eq. (23) and using piecewise linear interpolants as for

the x-direction gives (see Fig. 5)
Z Z
Di;jþ1=2

U
!ðx; y; tnÞdA � h2

4
U
!n

i;j þ U
!n

i;jþ1 þ
1

3
U
!lim

i;j;y �
1

3
U
!lim

i;jþ1;y

� �
: ð24Þ
The flux integral is handled in the same way as in the case of the x-direction. The first time step in the

y-direction can thus finally be written in the form
Fig. 5. Dual cell Di, j+1/2 with outward normal vectors.
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U
!nþ1

Di;jþ1=2
¼ 1

2
U
!n

i;j þ U
!n

i;jþ1

� �
þ 1

6
U
!lim

i;j;y � U
!lim

i;jþ1;y

� �
� Dt

h
f
!nþ1=2

aþi;j
� g!nþ1=2

aþi;j

� ��

þ f
!nþ1=2

aþ
i;jþ1

þ g!nþ1=2

aþ
i;jþ1

� �
þ � f

!nþ1=2

a�
i;jþ1

þ g!nþ1=2

a�
i;jþ1

� �
þ � f

!nþ1=2

a�ij
� g!nþ1=2

a�ij

� ��
: ð25Þ
4.3. Second time step

For the second time step, we seek an approximation of the solution on the original cell Ci (see Fig. 6.) at

time tn+2 using as initial data the solution already obtained on dual cells at time tn+1. The computation

follows an approach similar to that of the first time step. Integrating Eq. (11) on the domain

Ci · [tn+1, tn + 2] and applying Green�s theorem yields
AðCiÞU
!nþ2

i ¼
Z Z

Ci

U
!ðx; y; tnþ1ÞdA�

Z tnþ2

tnþ1

I
oCi

ð f!mx þ g!myÞdrdt: ð26Þ
The first integral of the right-hand side of Eq. (26) is decomposed into the contribution of four integrals,
and is approximated as
Z Z

Ci

U
!ðx; y; tnþ1ÞdA � h2

4
U
!nþ1

a þ U
!nþ1

b þ U
!nþ1

c þ U
!nþ1

d

� �
þ h2

24
U
!lim

a;x þ U
!lim

b;y � U
!lim

c;x � U
!lim

d;y

� �
: ð27Þ
For the flux integral, we proceed as before, using the midpoint rule for the time integration; we need

predictions for U
!

and F
!

on the cell interfaces at the intermediate time tn+3/2, and we also need the follow-

ing normal vectors:
ma ¼ ð�1; 0Þ; mb ¼ ð0;�1Þ; mc ¼ ð1; 0Þ; md ¼ ð0; 1Þ:

Writing
Z tnþ2

tnþ1

I
oCi

ð f!mx þ g!myÞdrdt ffi Dt
I
oCi

f
!ðU!ðx; y; tnþ3=2ÞÞmx þ g!ðU!ðx; y; tnþ3=2ÞÞmy
h i

dr ð28Þ
Fig. 6. Original square cell Ci, j with its four adjacent oblique dual cells.
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we shall approximate the flux on the interface through the point a (Fig. 6) as the arithmetical mean of the

fluxes at points a+ and a�, F
!

a ffi ðF!ðU!ðaþÞÞ þ F
!ðU!ða�ÞÞÞ=2. Predictions of the flux on the cell interfaces

at the intermediate time may be computed using Eq. (20). The solution at time tn+2 takes the following

form:
U
!nþ2

i;j ¼ 1

4
U
!nþ1

i�1=2;j þ U
!nþ1

iþ1=2;j þ U
!nþ1

i;j�1=2 þ U
!nþ1

i;jþ1=2

� �
þ 1

24
U
!lim

i�1=2;j;x þ U
!lim

i;j�1=2;y � U
!lim

iþ1=2;j;x � U
!lim

i;jþ1=2;y

� �

� Dt
2h

� f
!nþ3=2

aþ � f
!nþ3=2

a�

� �
þ � g!nþ3=2

b� � g!nþ3=2

bþ

� �
þ f

!nþ3=2

c� þ f
!nþ3=2

cþ

� �
þ g!nþ3=2

dþ þ g!nþ3=2

d�

� �� �
:

5. The physical constraint $ Æ B = 0

It is shown in electromagnetic theory that the magnetic field vector Bmust be solenoidal, and thus satisfy

Maxwell�s equation $ Æ B = 0.

If the initial magnetic field satisfies the divergence-free constraint ($ Æ B|t = 0 = 0), Faraday�s law guarantees

that it remains divergence-free for all time; indeed, applying the divergence operator to Faraday�s law gives:
otBþr� ðB� vÞ ¼ 0; ðFaraday’s lawÞ
) r � otBþr � r � ðB� vÞ ¼ 0

) otðr � BÞ ¼ 0:
In a paper published in 1980, Brackbill and Barnes [15] show that non-zero divergence of the magnetic

field can lead to non-physical waves and the production of negative pressures and densities in the case of

ideal MHD. Several methods have been proposed to satisfy the $ Æ B = 0 constraint: Brackbill and Barnes�
projection method [15], Powell�s 8-wave formulation method [41], Evans and Hawley�s Constrained Transport

method [21], Tóth�s [48] Central Differencemethod and many other methods. In this paper, our approach to

enforce the divB = 0 constraint is inspired by Evans and Hawley�s constrained transport (CT) method [21].

The different versions of the CT method are nicely presented in [48]; we shall now present the CT method in

its original staggered form in a Finite Difference context as described by Tóth [48], before introducing our

new approach for Central Finite Volume methods. We present the Constrained Transport approach for a

two-dimensional uniform Cartesian grid. The z-component (Bz) of the magnetic field is updated by the base

scheme without modification as it does not contribute to $ Æ B. The cell-centered magnetic field is denoted

by B and the magnetic field at the cell interfaces is denoted by B.
Evans and Hawley considered a staggered grid to maintain the divergence-free constraint of the

magnetic field at the cell interfaces (see Fig. 7).
Fig. 7. Staggered magnetic field.
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In two space dimensions, the x-component (bx) of the magnetic field is located at (xi+1/2,yj) (the cells are

being centered at points (xi,yj)), and the y-component is located at (xi,yj+1/2).

Let X ¼ E � k!¼ �ðv� BÞ � ð0; 0; 1ÞT denote the z-component of the electric field. The main idea of the

CT scheme is to place X at the cell corners. The induction equation otB + $ · E = 0 is discretized by simple

finite differences along the edges as follows
bnþ1
x jiþ1=2;j ¼ bnx jiþ1=2;j � Dt

Xiþ1=2;jþ1=2 � Xiþ1=2;j�1=2

Dy
;

bnþ1
y ji;jþ1=2 ¼ bny ji;jþ1=2 þ Dt

Xiþ1=2;jþ1=2 � Xi�1=2;jþ1=2

Dx
:

ð29Þ
The divergence of B is approximated as
r � bi;j ¼
bxjiþ1=2;j � bxji�1=2;j

Dx
þ
by ji;jþ1=2 � by ji;j�1=2

Dy
: ð30Þ
Hence, if $ Æ Bn = 0, it is easy to verify that the physical constraint $ Æ Bn+1 = 0 will be satisfied to the accu-
racy of round-off errors due to perfect cancelation of terms. The CT idea was combined with Godunov type

schemes by Dai and Woodward. Let the superscript *denote the results of the Godunov-type base scheme.

For structured grids, spatial and temporal interpolation are used to obtain the cell corner-centered mag-

netic field as follows:
�B
nþ1=2

iþ1=2;jþ1=2 ¼
1

8
ðBn

i;j þ Bn
iþ1;j þ Bn

i;jþ1 þ Bn
iþ1;jþ1 þ B	

i;j þ B	
iþ1;j þ B	

i;jþ1 þ B	
iþ1;jþ1Þ
with a similar formula for the velocity field v
nþ1=2
iþ1=2;jþ1=2. The z-component of the electric field (for ideal

MHD) is estimated as
Xnþ1=2
iþ1=2;jþ1=2 ¼ ��vnþ1=2

iþ1=2;jþ1=2 � �B
nþ1=2

iþ1=2;jþ1=2

� �
� k!:
Once X is obtained we update the B-field centered at cell interfaces according to (29) and the components

of the cell-centered magnetic field Bn+1 are approximated as follows:
Bnþ1
x ji;j ¼

bnþ1
x jiþ1=2;j þ bnþ1

x ji�1=2;j

2
;

Bnþ1
y ji;j ¼

bnþ1
y ji;jþ1=2 þ bnþ1

y ji;j�1=2

2
:

ð31Þ
5.1. Constrained transport for central schemes

Since the numerical schemes we use involve dual staggered cells, the CT approach cannot be applied di-
rectly. Here we propose an adaptation of the Constrained Transport approach to maintain the divergence-

free property of the magnetic field. Suppose that the solution at time tn is given on the original Cartesian

grid and is such that $ Æ Bn = 0, i.e.,
0 ¼ r � Bnji;j ¼
oBn

x

ox

����
i;j

þ
oBn

y

oy

����
i;j

’
Bn
x jiþ1;j � Bn

x ji�1;j

2Dx
þ
Bn
y ji;jþ1 � Bn

y ji;j�1

2Dy
: ð32Þ
Performing a first time step, we obtain the solution (at time tn+1) on the dual staggered grid. Let B	

denote the magnetic field part of this solution on the staggered cells (Di+1/2, j-type) in the x-direction. To

enforce the r �Bnþ1 ¼ 0 constraint, we first compute the z-component of the electric field ðX ¼ E � k
!
Þ as
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E
nþ1=2
iþ1=2;j ¼ �ðv� BÞnþ1=2

iþ1=2;j ¼ � 1

2
ðvnþ1 �B	Þiþ1=2;j þ

ðv� BÞni;j þ ðv� BÞniþ1;j

2

� �
: ð33Þ
We then discretize the induction equation using central differences and update the magnetic field at time

tn+1 as follows:
Bnþ1
x jiþ1=2;j ¼

Bn
x ji;j þ Bn

x jiþ1;j

2
� Dt

Xnþ1=2
iþ1=2;jþ1 � Xnþ1=2

iþ1=2;j�1

2Dy
; ð34Þ

Bnþ1
y jiþ1=2;j ¼

Bn
y ji;j þ Bn

y jiþ1;j

2
þ Dt

Xnþ1=2
iþ3=2;j � Xnþ1=2

i�1=2;j

2Dx
: ð35Þ
We shall prove that if $ Æ Bn = 0 on the original grid, the magnetic field B at time tn+1 on the dual cells

Di+1/2, j will also satisfy the divergence-free property, i.e.
Bnþ1
x jiþ3=2;j �Bnþ1

x ji�1=2;j

2Dx
þ
Bnþ1

y jiþ1=2;jþ1 �Bnþ1
y jiþ1=2;j�1

2Dy
¼ 0: ð36Þ
Using Eqs. (34) and (35) we compute the following quantities:
Bnþ1
x jiþ3=2;j ¼

Bn
x jiþ1;j þ Bn

x jiþ2;j

2
� Dt

Xnþ1=2
iþ3=2;jþ1 � Xnþ1=2

iþ3=2;j�1

2Dy
;

Bnþ1
x ji�1=2;j ¼

Bn
x ji�1;j þ Bn

x ji;j
2

� Dt
Xnþ1=2

i�1=2;jþ1 � Xnþ1=2
i�1=2;j�1

2Dy
;

Bnþ1
y jiþ1=2;jþ1 ¼

Bn
y ji;jþ1 þ Bn

y jiþ1;jþ1

2
þ Dt

Xnþ1=2
iþ3=2;jþ1 � Xnþ1=2

i�1=2;jþ1

2Dx
;

Bnþ1
y jiþ1=2;j�1 ¼

Bn
y ji;j�1 þ Bn

y jiþ1;j�1

2
þ Dt

Xnþ1=2

iþ3=2;j�1 � Xnþ1=2

i�1=2;j�1

2Dx
;

which we then substitute into Eq. (36); we obtain
r �Bnþ1jiþ1=2;j ¼
1

2
ðr � Bnji;j þr � Bnjiþ1;jÞ � 0: ð37Þ
We update the magnetic field at time tn+1 on the Di, j+1/2 cells in a similar manner; using the base scheme

we perform (with the updated magnetic field components) a second time step to obtain the solution on the

original Cartesian grid. Then we update the magnetic field obtained at time tn+2 which is also denoted by
B*. The z-component of the electric field is then computed in a way specially designed to satisfy the diver-

gence-free property of the magnetic field, from
E
nþ3=2
i;j ¼ �ðv� BÞnþ3=2

i;j

¼ � 1

2
ðvnþ2 � B	Þi;j þ

1

4
ðv� BÞnþ1

i�1=2;j þ ðv� BÞnþ1

iþ1=2;j þ ðv� BÞnþ1

i;j�1=2 þ ðv� BÞnþ1

i;jþ1=2

n o� �
: ð38Þ
We discretize the induction equation on the Cartesian grid
Bnþ2
x ji;j ¼

1

4

	
Bnþ1
x ji�1=2;j þ Bnþ1

x jiþ1=2;j þ Bnþ1
x ji;j�1=2 þ Bnþ1

x ji;jþ1=2



� Dt

Xnþ3=2
i;jþ1 � Xnþ3=2

i;j�1

2Dy
; ð39Þ



Fig. 8. We use the numerical data given on the original Cartesian cell and those on the four staggered dual cells to approximate the

value of the z-component X of the electric field at time tn+3/2.
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Bnþ2
y ji;j ¼

1

4
Bnþ1
y ji�1=2;j þ Bnþ1

y jiþ1=2;j þ Bnþ1
y ji;j�1=2 þ Bnþ1

y ji;jþ1=2

n o
þ Dt

Xnþ3=2
iþ1;j � Xnþ3=2

i�1;j

2Dx
: ð40Þ
As before, we discretize r � Bnþ2
ij using central differences:
r � Bnþ2
jk �

Bnþ2
x jjþ1;k � Bnþ2

x jj�1;k

2Dx
þ
Bnþ2
y jj;kþ1 � Bnþ2

y jj;k�1

2Dy
: ð41Þ
We easily prove that the therewith updated magnetic field satisfies the divergence-free constraint

(see Fig. 8).
r � Bnþ2
ij ¼ 0þ 1

4
r �Bnþ1

i�1=2;j þr �Bnþ1
iþ1=2;j þr �Bnþ1

i;j�1=2 þr �Bnþ1
i;jþ1=2

h i
¼ 0
if the physical constraint was satisfied at the previous time.
6. Numerical results

In this section, we present several numerical experiments we have performed for both one and two-

dimensional problems.

6.1. One-dimensional test problems

For the first set of numerical tests in one-dimensional space, we have chosen the shock tube problem [44].

We consider the interval [�1,1] of the x-axis, let c = 5/3, Bx = 2 and consider the initial data for the Rie-

mann problem at x = 0, Ur = [0.989112,�0.013123,0.026933,0.010037,4.024421,2.002600,0.971588] and

Ul = [1.08,1.2,0.01,0.5,3.6, 2.0,0.95] with U = [q,ux,uy,uz,By,Bz,p]. This first test case features seven dis-

continuities. We have considered a grid with 1000 meshpoints. The solution is computed at time

t = 0.25. We compared our numerical results with those obtained by Ryu and Jones [44]. Figs. 9 and 10
show a very good agreement between the numerical and reference solutions (which were obtained [44] with

10000 mesh points) when the MC limiter is applied with h = 2. The agreement is not quite so good when we

use the minmod limiter.

Next we have considered a Riemann problem with a compound wave, which consists of a shock and,

directly attached, a rarefaction wave [16]; we recall that compound waves cannot arise in solutions of
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Fig. 9. First test case, minmod limiter at left, MC-2 limiter at right.
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Fig. 10. First test case (continued), minmod limiter at left, MC-2 limiter at right.
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the Euler equations of gas dynamics. We consider the Riemann problem set at x = 0 in the interval [�1,1],

along with the initial data Ul ¼ ½1; 0; 0; 0;
ffiffiffiffiffiffi
4p

p
; 0; 1�; Ur ¼ ½0:125; 0; 0; 0;�

ffiffiffiffiffiffi
4p

p
; 0; 0:1� and Bx ¼ 0:75

ffiffiffiffiffiffi
4p

p
.

The solution is computed at time t = 0.25 with a CFL condition of 0.485.

We compared our numerical results with those obtained by Brio and Wu [16]. As with the previous test,

the agreement with [16] is particularly good when the MC-2 limiter is applied (see Figs. 11 and 12).
Notice that for the above two tests, the reference solutions are available from the following web site:

http://www-ian.math.uni-magdeburg.de/anume/testcase/MHD/

6.2. Two-dimensional test problems

We solved a 2D-adaptation of the one-dimensional MHD shock tube problem, involving a compound

wave. The computational domain is the rectangle �1 6 x 6 1,0 6 y 6 1. The initial conditions feature a

shock along the axis x = 0 with the following data: Ul ¼ ½1; 0; 0; 0;
ffiffiffiffiffiffi
4p

p
; 0; 1�; Ur ¼ ½0:125; 0; 0; 0;�

ffiffiffiffiffiffi
4p

p
;

0; 0:1�; and Bx ¼ 0:75
ffiffiffiffiffiffi
4p

p
. The solution is computed at time t = 0.25 with a CFL condition of 0.485.

The computations were performed with an MC-h(h = 1.5) limiter. Fig. 13 shows a very good agreement

of the numerical solution (400 data points dotted in blue) with the reference solution of the corresponding

one-dimensional problem obtained from 10000 data points (solid red line), [16].

For our next 2D test, we shall apply our new Constrained transport for central schemes (CTCS) method

to satisfy the divergence-free constraint. We consider here the Orszag–Tang MHD turbulence problem,

which describes the evolution of a compressible vortex system, which is a complex phenomenon involving

the interactions between several shock waves generated during the evolution of the vortex system and trav-
eling at different propagation speeds [48,18]. The initial conditions for our example are:

qðx; yÞ ¼ q0; pðx; yÞ ¼ p0; uðx; yÞ ¼ � sinð2pyÞiþ sinð2pxÞj; Bðx; yÞ ¼ � sinð2pyÞiþ sinð4pxÞj, with q0 =
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Fig. 11. Second test case, minmod limiter at left, MC-2 limiter at right.
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Fig. 12. Second test case (continued), minmod limiter at left, MC-2 limiter at right.
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Fig. 13. The profile of the solution of the 2D shock tube problem compared with the solution of the one-dimensional corresponding

problem.
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25/(36p) and p0 = 5/(12p). i and j are unit vectors in the x- and y-directions. Figs. 14 and 15 show the mass

density and pressure contours, respectively, at time t = 0.5. Fig. 16 shows the mass density contours, at time

t = 2. The agreement with the results of Jiang and Wu [29], who applied Brackbill and Barnes� projection
scheme [15] to enforce the magnetic field constraint, is excellent. The divergence values of the magnetic field
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Fig. 14. The mass density contour lines of the two-dimensional Orszag–Tang MHD turbulence problem at time t = 0.5.
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Fig. 15. The pressure contour lines of the two-dimensional Orszag–Tang MHD turbulence problem.
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on the computational domain remain of the order of 10e � 14 throughout the calculations, thus confirming

the efficiency of our method.

For the final two-dimensional example we consider a Riemann problem [18], with four initial states for
(q,p,ux,uy) given by (1,1,0.75,0.5) for x > 0 and y > 0, (2,1,0.75,0.5) for x < 0 and y > 0, (1,1,�0.75,0.5)



Fig. 16. The mass density contour lines of the two-dimensional Orszag–Tang MHD turbulence problem at time t = 2.

ρ

Fig. 17. Shaded gray scale mass density contour lines of the two-dimensional Orszag–Tang MHD turbulence problem at time t = 2.
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for x < 0 and y < 0 and (3,1,�0.75,�0.5) for x > 0 and y < 0. We consider a uniform initial magnetic field

B = (2,0,1). The solution is computed at time t = 0.8 on a 400 · 400 grid.
Here again we have applied our CTCS method to enforce the divergence-free constraint for the magnetic

field, which in this case gave divergence values within a 10e� 14 threshold. Figs. 18 and 19 show the con-

tour lines for the mass density and the magnitude of the magnetic field, respectively.

The contour lines in Fig. 18 are in very good agreement with those appearing in [18].
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Fig. 19. Shaded contour lines of the magnitude of the magnetic field for the two-dimensional MHD Riemann problem at time t = 0.8.

Fig. 18. Shaded, logarithmic scaled, contour lines of the mass density for the two-dimensional MHDRiemann problem at time t = 0.8.
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7. Conclusion

In this paper, we have extended our NT-type central finite volume methods to one and two-dimensional

problems in MHD, using Cartesian grids for the cells of the original grid, and our previously introduced

diamond cells for the dual grid. The fact that the resolution of the Riemann problems at the cell interfaces

is by-passed by central schemes has led in all previous numerical experiments performed for scalar conser-



P. Arminjon, R. Touma / Journal of Computational Physics 204 (2005) 737–759 757
vation equations [2], Euler�s equations [3], and Navier–Stokes equations [4], to very substantial computing

time reductions. It is therefore anticipated that they will also lead to significant computing time reductions

in the case of MHD problems where the solution of the Riemann problems is even more time demanding.

This will be illustrated in a forthcoming paper. Inspired from the constrained transport method of Evans

and Hawley, we have constructed our CTCS approach to maintain the divergence-free property of the mag-
netic field for the two-dimensional case. This CTCS method applies indifferently to schemes with Cartesian

dual cells or oblique diamond dual cells. A comparison between the CTCS methods for Cartesian and for

diamond dual cells will appear in [12] (see Fig. 17).

Our numerical results show the high potential of our base scheme and the CTCS method, which led to

divergence values within the range of 10e � 13, 10e � 14 for the problems we considered is this paper. It is

important to note that the CTCS approach was also applied in the case of staggered schemes such that the

dual cells are Cartesian [12]. In our current work, we are applying our method to a few more two-dimen-

sional reference test cases appearing in the literature, as well as several three-dimensional problems.
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[48] G. Tóth, The $ Æ B = 0 constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys. 161 (2000) 605–652.
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